Hybrid and Subexponential Linear Logics

نویسندگان

  • Joëlle Despeyroux
  • Carlos Olarte
  • Elaine Pimentel
چکیده

HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference relies on the way modalities are handled. In HyLL, truth judgments are labelled by worlds and hybrid connectives relate worlds with formulas. In SELL, the linear logic exponentials (!, ?) are decorated with labels representing locations and an ordering on such labels defines the provability relation among resources in those locations. It is well known that SELL, as a logical framework, is strictly more expressive than LL. However, so far, it was not clear whether HyLL is more expressive than LL and/or SELL. In this paper, we show an encoding of the HyLL’s logical rules into LL with the highest level of adequacy, hence showing that HyLL is as expressive as LL. We also propose an encoding of HyLL into SELLe (SELL plus quantification over locations) that gives better insights about the meaning of worlds in HyLL. Finally, we show how to encode temporal operators of Computational Tree Logic (CTL) into LL with fixed point operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid and Subexponential Linear Logics Technical Report

HyLL (Hybrid Linear Logic) and SELL (Subexponential Linear Logic) are logical frameworks that have been extensively used for specifying systems that exhibit modalities such as temporal or spatial ones. Both frameworks have linear logic (LL) as a common ground and they admit (cut-free) complete focused proof systems. The difference between the two logics relies on the way modalities are handled....

متن کامل

Hybrid Logics on Linear Structures: Expressivity and Complexity

We investigate expressivity and complexity of hybrid logics on linear structures. Hybrid logics are an enrichment of modal logics with certain first-order features which are algorithmically well behaved. Therefore, they are well suited for the specification of certain properties of computational systems. We show that hybrid logics are more expressive than usual modal and temporal logics on line...

متن کامل

Classical and Intuitionistic Subexponential Logics Are Equally Expressive

It is standard to regard the intuitionistic restriction of a classical logic as increasing the expressivity of the logic because the classical logic can be adequately represented in the intuitionistic logic by double-negation, while the other direction has no truth-preserving propositional encodings. We show here that subexponential logic, which is a family of substructural refinements of class...

متن کامل

Hybrid Branching-Time Logics

Hybrid branching-time logics are introduced as extensions of CT L-like logics with state variables and the downarrow-binder. Following recent work in the linear framework, only logics with a single variable are considered. The expressive power and the complexity of satisfiability of the resulting logics is investigated. As main result, the satisfiability problem for the hybrid versions of sever...

متن کامل

Undecidability of Multiplicative Subexponential Logic

Subexponential logic is a variant of linear logic with a family of exponential connectives—called subexponentials—that are indexed and arranged in a pre-order. Each subexponential has or lacks associated structural properties of weakening and contraction. We show that classical propositional multiplicative linear logic extended with one unrestricted and two incomparable linear subexponentials c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. Notes Theor. Comput. Sci.

دوره 332  شماره 

صفحات  -

تاریخ انتشار 2017